概念
堆排序是利用堆这种数据结构而设计的一种排序算法,堆排序是一种选择排序,它的最坏,最好,平均时间复杂度均为O(nlogn),它也是不稳定排序。首先简单了解下堆结构。
堆是具有以下性质的完全二叉树:
每个结点的值都大于或等于其左右孩子结点的值,称为大顶堆;
或每个结点的值都小于或等于其左右孩子结点的值,称为小顶堆。
如下图:
同时,我们对堆中的结点按层进行编号,将这种逻辑结构映射到数组中就是下面这个样子
该数组从逻辑上讲就是一个堆结构,我们用简单的公式来描述一下堆的定义就是:
大顶堆:arr[i] >= arr[2i+1] && arr[i] >= arr[2i+2]
小顶堆:arr[i] <= arr[2i+1] && arr[i] <= arr[2i+2]
接下来,看看堆排序的基本思想及基本步骤:
基本思想
将待排序序列构造成一个大顶堆,此时,整个序列的最大值就是堆顶的根节点。将其与末尾元素进行交换,此时末尾就为最大值。然后将剩余n-1个元素重新构造成一个堆,这样会得到n个元素的次小值。如此反复执行,便能得到一个有序序列。
步骤
1.构造初始堆
将给定无序序列构造成一个大顶堆(一般升序采用大顶堆,降序采用小顶堆)。假设给定无序序列结构如下:
从最后一个非叶子结点开始,叶结点自然不用调整,第一个非叶子结点 arr.length/2-1=5/2-1=1,也就是下面的6结点,从左至右,从下至上进行调整。
找到第二个非叶节点4,由于[4,9,8]中9元素最大,4和9交换。
这时,交换导致了子根[4,5,6]结构混乱,继续调整,[4,5,6]中6最大,交换4和6。
此时,就将一个无需序列构造成了一个大顶堆。
2.将堆顶元素与末尾元素进行交换,使末尾元素最大。然后继续调整堆,再将堆顶元素与末尾元素交换,得到第二大元素。如此反复进行交换、重建、交换。
将堆顶元素9和末尾元素4进行交换
重新调整结构,使其继续满足堆定义:
再将堆顶元素8与末尾元素5进行交换,得到第二大元素8.
后续过程,继续进行调整,交换,如此反复进行,最终使得整个序列有序
总结堆排序的基本思路:
- 将无需序列构建成一个堆,根据升序降序需求选择大顶堆或小顶堆;
- 将堆顶元素与末尾元素交换,将最大元素”沉”到数组末端;
- 重新调整结构,使其满足堆定义,然后继续交换堆顶元素与当前末尾元素,反复执行调整+交换步骤,直到整个序列有序。
代码
import java.util.Arrays; public class Test2 { public static void main(String[] args) { int[] arr = {9, 8, 7, 6, 5, 4, 3, 2, 1}; sort(arr); System.out.println(Arrays.toString(arr)); } public static void sort(int[] arr) { //1.构建大顶堆 for (int i = arr.length / 2 - 1; i >= 0; i--) { //从第一个非叶子结点从下至上,从右至左调整结构 adjustHeap(arr, i, arr.length); } //2.调整堆结构+交换堆顶元素与末尾元素 for (int j = arr.length - 1; j > 0; j--) { swap(arr, 0, j);//将堆顶元素与末尾元素进行交换 adjustHeap(arr, 0, j);//重新对堆进行调整 } } /** * 调整大顶堆(仅是调整过程,建立在大顶堆已构建的基础上) * * @param arr * @param i * @param length */ public static void adjustHeap(int[] arr, int i, int length) { int temp = arr[i];//先取出当前元素i for (int k = i * 2 + 1; k < length; k = k * 2 + 1) {//从i结点的左子结点开始,也就是2i+1处开始 if (k + 1 < length && arr[k] < arr[k + 1]) {//如果左子结点小于右子结点,k指向右子结点 k++; } if (arr[k] > temp) {//如果子节点大于父节点,将子节点值赋给父节点(不用进行交换) arr[i] = arr[k]; i = k; } else { break; } } arr[i] = temp;//将temp值放到最终的位置 } /** * 交换元素 * * @param arr * @param a * @param b */ public static void swap(int[] arr, int a, int b) { int temp = arr[a]; arr[a] = arr[b]; arr[b] = temp; } }
结果:
[1, 2, 3, 4, 5, 6, 7, 8, 9]
最后
堆排序是一种选择排序,整体主要由:构建初始堆 + 交换堆顶元素和末尾元素并重建堆两部分组成。其中构建初始堆经推导复杂度为O(n),在交换并重建堆的过程中,需交换n-1次,而重建堆的过程中,根据完全二叉树的性质,[log2(n-1),log2(n-2)…1]逐步递减,近似为nlogn。所以堆排序时间复杂度一般认为就是O(nlogn)级。