数据结构:图Graph

图的简介

图(Graph)结构是一种非线性的数据结构,图在实际生活中有很多例子,比如交通运输网,地铁网络,社交网络,计算机中的状态执行(自动机)等等都可以抽象成图结构。图结构比树结构复杂的非线性结构。

图结构构成

1.顶点(vertex):图中的数据元素,如图一。

2.边(edge):图中连接这些顶点的线,如图一。

1 

图一

所有的顶点构成一个顶点集合,所有的边构成边的集合,一个完整的图结构就是由顶点集合和边集合组成。图结构在数学上记为以下形式:

G=(V,E)   或者   G=(V(G),E(G))

其中 V(G)表示图结构所有顶点的集合,顶点可以用不同的数字或者字母来表示。E(G)是图结构中所有边的集合,每条边由所连接的两个顶点来表示。

图结构中顶点集合V(G)不能为空,必须包含一个顶点,而图结构边集合可以为空,表示没有边。

图的基本概念

1.无向图(undirected graph)

       如果一个图结构中,所有的边都没有方向性,那么这种图便称为无向图。典型的无向图,如图二所示。由于无向图中的边没有方向性,这样我们在表示边的时候对两个顶点的顺序没有要求。例如顶点VI和顶点V5之间的边,可以表示为(V2, V6),也可以表示为(V6,V2)。

2

图二  无向图

对于图二无向图,对应的顶点集合和边集合如下:

V(G)= {V1,V2,V3,V4,V5,V6}

E(G)= {(V1,V2),(V1,V3),(V2,V6),(V2,V5),(V2,V4),(V4,V3),(V3,V5),(V5,V6)}

2.有向图(directed graph)

一个图结构中,边是有方向性的,那么这种图就称为有向图,如图三所示。由于图的边有方向性,我们在表示边的时候对两个顶点的顺序就有要求。我们采用尖括号表示有向边,例如<V2,V6>表示从顶点V2到顶点V6,而<V6,V2>表示顶点V6到顶点V2。

3

图三  有向图

对于图三有向图,对应的顶点集合和边集合如下:

V(G)= {V1,V2,V3,V4,V5,V6}

E(G)= {<V2,V1>,<V3,V1>,<V4,V3>,<V4,V2>,<V3,V5>,<V5,V3>,<V2,V5>,<V6,V5>,<V2,V6>,<V6,V2>}

*注意:无向图也可以理解成一个特殊的有向图,就是边互相指向对方节点,A指向B,B又指向A。

3.混合图(mixed graph)

一个图结构中,边同时有的是有方向性有的是无方向型的图。

在生活中混合图这种情况比较常见,比如城市道路中有些道路是单向通行,有的是双向通行。

4.顶点的度

连接顶点的边的数量称为该顶点的度。顶点的度在有向图和无向图中具有不同的表示。对于无向图,一个顶点V的度比较简单,其是连接该顶点的边的数量,记为D(V)。 例如,图二所示的无向图中,顶点V5的度为3。而V6的度为2。

     对于有向图要稍复杂些,根据连接顶点V的边的方向性,一个顶点的度有入度出度之分。

  •  入度是以该顶点为端点的入边数量, 记为ID(V)。
  •  出度是以该顶点为端点的出边数量, 记为OD(V)。

     这样,有向图中,一个顶点V的总度便是入度和出度之和,即D(V) = ID(V) + OD(V)。例如,图三所示的有向图中,顶点V5的入度为3,出度为1,因此,顶点V5的总度为4。

5.邻接顶点

邻接顶点是指图结构中一条边的两个顶点。 邻接顶点在有向图和无向图中具有不同的表示。对于无向图,邻接顶点比较简单。例如,在图二所示的无向图中,顶点V2和顶点V6互为邻接顶点,顶点V2和顶点V5互为邻接顶点等。

对于有向图要稍复杂些,根据连接顶点V的边的方向性,两个顶点分别称为起始顶点(起点或始点)和结束顶点(终点)。有向图的邻接顶点分为两类:

  • 入边邻接顶点:连接该顶点的边中的起始顶点。例如,对于组成<V2,V6>这条边的两个顶点,V2是V6的入边邻接顶点。
  • 出边邻接顶点:连接该顶点的边中的结束顶点。例如,对于组成<V2,V6>这条边的两个顶点,V6是V2的出边邻接顶点。

6.无向完全图

如果在一个无向图中, 每两个顶点之间都存在条边,那么这种图结构称为无向完全图。典型的无向完全图,如图四所示。
4

图四  无向完全图

理论上可以证明,对于一个包含n个顶点的无向完全图,其总边数为n(n-1)/2

比如图四总边数就是5,例子:5*(5-1)/2=10。

7.有向完全图

如果在一个有向图中,每两个顶点之间都存在方向相反的两条边,那么这种图结构称为有向完全图。典型的有向完全图,如图五所示。

5

图五 有向完全图

 

理论上可以证明,对于一个包含n的顶点的有向完全图,其总的边数为:n(n-1)

这是无向完全图的两倍,这个也很好理解,因为每两个顶点之间需要两条边。

8.有向无环图(DAG图)

如果一个有向图无法从某个顶点出发经过若干条边回到该点,则这个图是一个有向无环图。有向无环图可以利用在区块链技术中。

9.无权图和有权图

6

这里的权可以理解成一个数值,就是说节点与节点之间这个边是否有一个数值与它对应,对于无权图来说这个边不需要具体的值。对于有权图节点与节点之间的关系可能需要某个值来表示,比如这个数值能代表两个顶点间的距离,或者从一个顶点到另一个顶点的时间,所以这时候这个边的值就是代表着两个节点之间的关系,这种图被称为有权图;

10.图的连通性

图的每个节点不一定每个节点都会被边连接起来,所以这就涉及到图的连通性,如下图:

7

可以发现上面这个图不是完全连通的。

11.简单图 ( Simple Graph)

对于节点与节点之间存在两种边,这两种边相对比较特殊

1.自环边(self-loop):节点自身的边,自己指向自己。

2.平行边(parallel-edges):两个节点之间存在多个边相连接。

8

这两种边都是有意义的,比如从A城市到B城市可能不仅仅有一条路,比如有三条路,这样平行边就可以用到这种情况。不过这两种边在算法设计上会加大实现的难度。而简单图就是不考虑这两种边。

 
Copyright © 2008-2021 lanxinbase.com Rights Reserved. | 粤ICP备14086738号-3 |