归并排序算法详解

基本思想

归并排序(MERGE-SORT)是利用归并的思想实现的排序方法,该算法采用经典的分治策略。

将问题分(divide)成一些小的问题然后递归求解

则将分的阶段得到数据进行加工处理,最终形成一个有顺序的序列,这就是分而治之

如下图:1626941416-5987-20161218163120151-452283750

可以看到这种结构很像一棵完全二叉树,归并排序可以使用迭代、递归的方式去实现,这里采用递归;

合并相邻序列

再来看看治阶段,将两个已经有序的子序列合并成一个有序序列,要将[4,5,7,8]和[1,2,3,6]两个已经有序的子序列,合并为最终序列[1,2,3,4,5,6,7,8],实现步骤:

1626941416-4265-20161218194508761-468169540

1626941416-8699-20161218194621308-588010220

代码实现

package com.ikonke.openapi;

import java.util.Arrays;


public class Test2 {
    public static void main(String[] args) {
        int[] arr = {9, 8, 7, 6, 5, 4, 3, 2, 1};
        sort(arr);
        System.out.println(Arrays.toString(arr));
    }

    /**
     * 排序递归的方法
     *
     * @param arr
     */
    public static void sort(int[] arr) {
        /**
         * 临时数组
         */
        int[] temp = new int[arr.length];
        sort(arr, 0, arr.length - 1, temp);
    }

    /**
     * 分治的方法
     *
     * @param arr
     * @param left
     * @param right
     * @param temp
     */
    private static void sort(int[] arr, int left, int right, int[] temp) {
        if (left < right) {
            //从数组中间开始
            int mid = (left + right) / 2;
            //左边归并排序,使得左子序列有序
            sort(arr, left, mid, temp);

            //右边归并排序,使得右子序列有序
            sort(arr, mid + 1, right, temp);

            //将两个有序子数组合并操作
            merge(arr, left, mid, right, temp);
        }
    }

    /**
     * 数组合并
     *
     * @param arr   原数组
     * @param left
     * @param mid
     * @param right
     * @param temp  临时数组
     */
    private static void merge(int[] arr, int left, int mid, int right, int[] temp) {
        int i = left;//左指针
        int j = mid + 1;//右指针
        int t = 0;//临时数组指针
        while (i <= mid && j <= right) {
            if (arr[i] <= arr[j]) {
                temp[t++] = arr[i++];
            } else {
                temp[t++] = arr[j++];
            }
        }
        while (i <= mid) {//将左边数组赋值到临时数组
            temp[t++] = arr[i++];
        }
        while (j <= right) {//将右边数组赋值到临时数组
            temp[t++] = arr[j++];
        }
        t = 0;
        //数组拷贝替换
        while (left <= right) {
            arr[left++] = temp[t++];
        }
    }
}

执行结果

[1, 2, 3, 4, 5, 6, 7, 8, 9]

总结

归并排序是稳定排序,也是一种十分高效的排序,当进行大数据排序的时候使用归并效率会高很多,如果只有>50个数组,我认为还是使用插入排序、冒泡排序之类的,会合适些。

从上文的图中可看出,每次合并操作的平均时间复杂度为O(n),而完全二叉树的深度为|log2n|。总的平均时间复杂度为O(nlogn)。而且,归并排序的最好,最坏,平均时间复杂度均为O(nlogn)。

堆排序算法详解

概念

堆排序是利用堆这种数据结构而设计的一种排序算法,堆排序是一种选择排序,它的最坏,最好,平均时间复杂度均为O(nlogn),它也是不稳定排序。首先简单了解下堆结构。

堆是具有以下性质的完全二叉树:

每个结点的值都大于或等于其左右孩子结点的值,称为大顶堆;

或每个结点的值都小于或等于其左右孩子结点的值,称为小顶堆。

如下图:

1626920600-8986-20161217182750011-675658660

同时,我们对堆中的结点按层进行编号,将这种逻辑结构映射到数组中就是下面这个样子

1626920600-3203-20161217182857323-2092264199

该数组从逻辑上讲就是一个堆结构,我们用简单的公式来描述一下堆的定义就是:

大顶堆:arr[i] >= arr[2i+1] && arr[i] >= arr[2i+2]

小顶堆:arr[i] <= arr[2i+1] && arr[i] <= arr[2i+2]

接下来,看看堆排序的基本思想及基本步骤:

基本思想

将待排序序列构造成一个大顶堆,此时,整个序列的最大值就是堆顶的根节点。将其与末尾元素进行交换,此时末尾就为最大值。然后将剩余n-1个元素重新构造成一个堆,这样会得到n个元素的次小值。如此反复执行,便能得到一个有序序列。

步骤

1.构造初始堆

将给定无序序列构造成一个大顶堆(一般升序采用大顶堆,降序采用小顶堆)。假设给定无序序列结构如下:

1626920600-4223-20161217192038651-934327647

从最后一个非叶子结点开始,叶结点自然不用调整,第一个非叶子结点 arr.length/2-1=5/2-1=1,也就是下面的6结点,从左至右,从下至上进行调整。

1626920600-2305-20161217192209433-270379236

找到第二个非叶节点4,由于[4,9,8]中9元素最大,4和9交换。

1626920600-5824-20161217192854636-1823585260

这时,交换导致了子根[4,5,6]结构混乱,继续调整,[4,5,6]中6最大,交换4和6。

1626920600-9719-20161217193347886-1142194411

此时,就将一个无需序列构造成了一个大顶堆。

2.将堆顶元素与末尾元素进行交换,使末尾元素最大。然后继续调整堆,再将堆顶元素与末尾元素交换,得到第二大元素。如此反复进行交换、重建、交换。

将堆顶元素9和末尾元素4进行交换

1626920608-5605-20161217194207620-1455153342

重新调整结构,使其继续满足堆定义:

1626920610-9242-20161218153110495-1280388728

再将堆顶元素8与末尾元素5进行交换,得到第二大元素8.

1626920614-9891-20161218152929339-1114983222

后续过程,继续进行调整,交换,如此反复进行,最终使得整个序列有序

1626920614-5968-20161218152348229-935654830

总结堆排序的基本思路:

  • 将无需序列构建成一个堆,根据升序降序需求选择大顶堆或小顶堆;
  • 将堆顶元素与末尾元素交换,将最大元素”沉”到数组末端;
  • 重新调整结构,使其满足堆定义,然后继续交换堆顶元素与当前末尾元素,反复执行调整+交换步骤,直到整个序列有序。

代码

import java.util.Arrays;

public class Test2 {
    public static void main(String[] args) {
        
        int[] arr = {9, 8, 7, 6, 5, 4, 3, 2, 1};
        sort(arr);
        System.out.println(Arrays.toString(arr));
    }

    public static void sort(int[] arr) {
        //1.构建大顶堆
        for (int i = arr.length / 2 - 1; i >= 0; i--) {
            //从第一个非叶子结点从下至上,从右至左调整结构
            adjustHeap(arr, i, arr.length);
        }
        //2.调整堆结构+交换堆顶元素与末尾元素
        for (int j = arr.length - 1; j > 0; j--) {
            swap(arr, 0, j);//将堆顶元素与末尾元素进行交换
            adjustHeap(arr, 0, j);//重新对堆进行调整
        }

    }

    /**
     * 调整大顶堆(仅是调整过程,建立在大顶堆已构建的基础上)
     *
     * @param arr
     * @param i
     * @param length
     */
    public static void adjustHeap(int[] arr, int i, int length) {
        int temp = arr[i];//先取出当前元素i
        for (int k = i * 2 + 1; k < length; k = k * 2 + 1) {//从i结点的左子结点开始,也就是2i+1处开始
            if (k + 1 < length && arr[k] < arr[k + 1]) {//如果左子结点小于右子结点,k指向右子结点
                k++;
            }
            if (arr[k] > temp) {//如果子节点大于父节点,将子节点值赋给父节点(不用进行交换)
                arr[i] = arr[k];
                i = k;
            } else {
                break;
            }
        }
        arr[i] = temp;//将temp值放到最终的位置
    }

    /**
     * 交换元素
     *
     * @param arr
     * @param a
     * @param b
     */
    public static void swap(int[] arr, int a, int b) {
        int temp = arr[a];
        arr[a] = arr[b];
        arr[b] = temp;
    }
}

结果:

[1, 2, 3, 4, 5, 6, 7, 8, 9]

最后

堆排序是一种选择排序,整体主要由:构建初始堆 + 交换堆顶元素和末尾元素并重建堆两部分组成。其中构建初始堆经推导复杂度为O(n),在交换并重建堆的过程中,需交换n-1次,而重建堆的过程中,根据完全二叉树的性质,[log2(n-1),log2(n-2)…1]逐步递减,近似为nlogn。所以堆排序时间复杂度一般认为就是O(nlogn)级。

 
Copyright © 2008-2021 lanxinbase.com Rights Reserved. | 粤ICP备14086738号-3 |