java文本搜索工具

通过关键词检索目录下的所有日志文件,然后返回搜索的内容,这个工具用于定位日志特别有用;搜索服务的类通过多线程,每一个线程搜索一个文件,效率很高,上百个文件基本上都是在几秒内完成。

搜索服务的源码

package system.service;

import system.service.base.BaseService;

import java.io.*;
import java.nio.charset.StandardCharsets;
import java.util.ArrayList;
import java.util.List;

public class TextFindService extends BaseService implements Runnable {
    private String path;
    private String name;
    private String[] keywords;
    private List<String> result = new ArrayList<>();
    private boolean working;

    public TextFindService(String path, String name, String[] keywords) {
        this.path = path;
        this.name = name;
        this.keywords = keywords;
        this.working = true;
    }

    @Override
    public void run() {
        File file = new File(getPath() + getName());
        InputStreamReader reader = null;
        BufferedReader br = null;
        long time = System.currentTimeMillis();
        if (!file.exists()) {
            this.putLog(getName() + ":文件不存在");
            return;
        }
        this.putLog(getName() + ":开始搜索...");
        try {
            reader = new InputStreamReader(new FileInputStream(file), StandardCharsets.UTF_8);

            br = new BufferedReader(reader);
            String line = null;
            int count = 0;
            while ((line = br.readLine()) != null) {
                if (!working) {
                    Thread.yield();
                    break;
                }
                boolean find = true;
                for (String kds : getKeywords()) {
                    if (!line.toLowerCase().contains(kds.toLowerCase())) {
                        find = false;
                        break;
                    }
                }
                if (find) {
                    getResult().add(line);
                    count++;
                }
            }
            this.putLog(getName() + ":完毕,找到" + count + "行数据");
        } catch (IOException e) {
            e.printStackTrace();
            this.putLog(e.getMessage());
        } finally {
            if (br != null) {
                try {
                    br.close();
                } catch (IOException e) {
                    e.printStackTrace();
                }
            }
            if (reader != null) {
                try {
                    reader.close();
                } catch (IOException e) {
                    e.printStackTrace();
                }
            }
            working = false;
        }
        this.putLog(getName() + ":搜索结束...use time " + (System.currentTimeMillis() - time) + "ms");
    }

    private String getPath() {
        return path;
    }

    private String[] getKeywords() {
        return keywords;
    }

    public List<String> getResult() {
        return result;
    }

    public String getName() {
        return name;
    }

    public void stop() {
        this.working = false;
    }

    private void putLog(String data) {
        this.getResult().add(data);
        log(data);
    }

    public static void main(String[] args) {

        String path = "C:\\Users\\Downloads\\test\\";
        String name = "my.log";
        String keywords = "keywords";

        TextFindService find = new TextFindService(path, name, keywords.split(";"));
        find.run();
        for (String str : find.getResult()) {
            System.out.println(str);
        }

    }

    public boolean isDone() {
        return !working;
    }
}

这里面比较重要的就是run()函数中的源码,复杂搜索、工作状态判断、让权等;完成之后还不忘关闭文件句柄。

其中服务类main()主函数是我用来测试使用的,但这只能在源码里调试,添加一个GUI界面会更方便。

新增一个java swing GUI图形界面,这个工具更加遍历,不用每次都编写代码去检索。

Swing编程源代码:

package view;

import system.component.Button;
import system.component.TextEdit;
import system.component.TextView;
import system.conf.Constant;
import system.lib.CompactController;
import system.lib.IController;
import system.service.TextFindService;
import system.utils.DateTimeUtils;
import system.utils.StringUtils;

import javax.swing.*;
import java.awt.*;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.awt.event.FocusEvent;
import java.awt.event.FocusListener;
import java.io.*;
import java.time.LocalDateTime;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;

public class LogSplitViewController extends CompactController implements IController, ActionListener, FocusListener {

    private TextEdit path, keywords;
    private JTextArea logs;

    private TextView labPath, labKey, labLogs, status;
    private Button start, stop;

    private static final String TIP_PATH = "Input the logs directory path.";
    private static final String TIP_KEYWORDS = "Multi keywords use ';' of symbol to split.";

    private List<TextFindService> findServiceList = new ArrayList<>();
    private String version = "20210903#v1.0";

    public LogSplitViewController() {
        super(680, 500);
    }


    @Override
    protected void createInit() {
        int x = 10, y = 10;
        path = new TextEdit();
        keywords = new TextEdit();
        logs = new JTextArea();
        path.setName("path");
        keywords.setName("keywords");

        labPath = new TextView("Directory:");
        labKey = new TextView("Keywords:");
        labLogs = new TextView("Logs:");
        status = new TextView("finished.");

        start = new Button("Analyse");
        stop = new Button("Break");

        labPath.setBounds(x, y, 80, 28);
        labKey.setBounds(x, y + 38, 80, 28);
        labLogs.setBounds(x, y + 76, 80, 28);

        path.setBounds(x + 65, y, 450, 32);
        keywords.setBounds(x + 65, y + 38, 450, 32);

        status.setBounds(0, y + 432, 680, 30);
        status.setBackground(Color.BLACK);
        status.setForeground(Color.green);

        JScrollPane scrollPane1 = new JScrollPane(logs);
        scrollPane1.setBounds(x + 40, y + 42 * 2, 600, 335);
        logs.setForeground(Color.green);
        logs.setBackground(Color.BLACK);

        start.setBounds(x + 530, y, 100, 32);
        stop.setBounds(x + 530, y + 38, 100, 32);

        this.setLayout(null);
        this.add(start);
        this.add(stop);
        this.add(path);
        this.add(keywords);
        this.add(status);
        this.add(scrollPane1);
        this.add(labLogs);
        this.add(labPath);
        this.add(labKey);

        start.addActionListener(this);
        stop.addActionListener(this);
        this.setTip(keywords, TIP_KEYWORDS);
        this.setTip(path, TIP_PATH);
        stop.setEnabled(false);
    }


    @Override
    public void init() {

    }

    @Override
    public void showX() {
        this.setTitle(Constant.TITLE_LOG_SPLIT + " - " + version);
        this.setResizable(false);
        this.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
        this.setVisible(true);
        this.init();
    }

    @Override
    public void close() {

    }

    @Override
    public void hideX() {

    }

    private String[] keys() {
        String string = keywords.getText();
        if (string.contains(";")) {
            return string.split(";");
        }
        if (string.contains("|")) {
            return string.split("|");
        }
        return string.split(";");
    }

    private void initFind() {
        start.setEnabled(false);
        stop.setEnabled(true);
    }

    private void lastFind() {
        start.setEnabled(true);
        stop.setEnabled(false);
    }

    private void find() {
        try {
            initFind();
            checkFind();
            findBefore();

            File file = new File(path.getText());
            if (!file.exists()) {
                throw new Exception("The directory is don't exists.");
            }
            this.doFind(file.getPath() + "/", file.listFiles());
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
//            lastFind();
        }
    }

    private void doFind(String path, File[] listFiles) {
        long time = System.currentTimeMillis();

        logPut("开始查找...path=" + path);
        String logname = DateTimeUtils.format(DateTimeUtils.getLocalDateTime(), "yyyyMMddHHmmss") + ".log";

        for (File file : listFiles) {
            logPut(" - 创建查找服务 " + file.getName());
            TextFindService service = new TextFindService(path, file.getName(), keys());
            findServiceList.add(service);
            new Thread(service).start();
        }


        new Thread(() -> {
            while (true) {
                if (System.currentTimeMillis() - time > 3600000) {
                    logPut("超时,放弃查找...");
                    break;
                }
                Iterator<TextFindService> iterator = findServiceList.iterator();
                if (!iterator.hasNext()) {
                    break;
                }
                while (iterator.hasNext()) {
                    TextFindService service = iterator.next();
                    if (service.isDone()) {
                        iterator.remove();
                        this.write(path, logname, service.getResult(), service.getName());
                    }
                }
            }
            logPut("查找完成!用时:" + (System.currentTimeMillis() - time) + "ms");
            lastFind();
        }).start();

    }

    private synchronized void write(String path, String logname, List<String> result, String name) {
        logPut(name + " 文件查找完成,写入到文件:" + logname);
        File file = new File(path + logname);
        FileOutputStream out = null;
        try {
            out = new FileOutputStream(file, true);
            out.write(("--------------------------" + name + "------------------------------").getBytes());
            out.write("\n".getBytes());
            for (String s : result) {
                out.write(s.getBytes());
                out.write("\n".getBytes());
            }
            out.flush();
        } catch (IOException e) {
            e.printStackTrace();
            logPut(e.getMessage());
        } finally {
            if (out != null) {
                try {
                    out.close();
                } catch (IOException e) {
                    e.printStackTrace();
                }
            }
            logPut("写入文件完成");
            logPut("还剩:" + findServiceList.size() + "个文件");

        }

    }

    private void breakFind() {
        logPut("breaking...");
        for (TextFindService service : findServiceList) {
            service.stop();
        }
        logPut("breaking done.");
        lastFind();
    }

    private void findBefore() {
        logs.setText("");
        findServiceList.clear();
    }

    private void checkFind() throws Exception {
        if (StringUtils.isEmptyTrim(path.getText()) || TIP_PATH.equals(path.getText())) {
            dialog(TIP_PATH);
            throw new Exception(TIP_PATH);
        }
        if (StringUtils.isEmptyTrim(keywords.getText()) || TIP_KEYWORDS.equals(keywords.getText())) {
            dialog("least one keyword");
            throw new Exception("least one keyword");
        }
    }

    private void setTip(TextEdit keywords, String tipKeywords) {
        if (!StringUtils.isEmptyTrim(keywords.getText())) {
            return;
        }
        keywords.setForeground(Color.gray);
        keywords.setText(tipKeywords);
        keywords.addFocusListener(this);
    }

    @Override
    public void actionPerformed(ActionEvent e) {
        Button button = (Button) e.getSource();
        if ("Analyse".equals(button.getName())) {
            find();
        } else if ("Break".equals(button.getName())) {
            breakFind();
        }
    }

    @Override
    public void focusGained(FocusEvent e) {
        TextEdit obj = ((TextEdit) (e.getSource()));
        if (TIP_KEYWORDS.equals(obj.getText())) {
            obj.setForeground(Color.black);
            obj.setText("");
        } else if (TIP_PATH.equals(obj.getText())) {
            obj.setForeground(Color.black);
            obj.setText("");
        }
    }

    @Override
    public void focusLost(FocusEvent e) {
        TextEdit obj = ((TextEdit) (e.getSource()));
        if ("path".equals(obj.getName()) && obj.getText().length() == 0) {
            setTip(obj, TIP_PATH);
        } else if ("keywords".equals(obj.getName()) && obj.getText().length() == 0) {
            setTip(obj, TIP_KEYWORDS);
        }
    }

    private void logPut(String msg) {
        logs.setText(logs.getText() + LocalDateTime.now().toString() + " " + msg + "\n");
        logs.setCaretPosition(logs.getDocument().getLength());
        status.setText(msg);
    }
}

现在来看一下效果:

QQ截图20210911100429

 

 

美团的领域驱动设计

至少30年以前,一些软件设计人员就已经意识到领域建模和设计的重要性,并形成一种思潮,Eric Evans将其定义为领域驱动设计(Domain-Driven Design,简称DDD)。在互联网开发“小步快跑,迭代试错”的大环境下,DDD似乎是一种比较“古老而缓慢”的思想。然而,由于互联网公司也逐渐深入实体经济,业务日益复杂,我们在开发中也越来越多地遇到传统行业软件开发中所面临的问题。本文就先来讲一下这些问题,然后再尝试在实践中用DDD的思想来解决这些问题。

过度耦合

业务初期,我们的功能大都非常简单,普通的CRUD就能满足,此时系统是清晰的。随着迭代的不断演化,业务逻辑变得越来越复杂,我们的系统也越来越冗杂。模块彼此关联,谁都很难说清模块的具体功能意图是啥。修改一个功能时,往往光回溯该功能需要的修改点就需要很长时间,更别提修改带来的不可预知的影响面。

下图是一个常见的系统耦合病例。

服务耦合示意图

服务耦合示意图

订单服务接口中提供了查询、创建订单相关的接口,也提供了订单评价、支付、保险的接口。同时我们的表也是一个订单大表,包含了非常多字段。在我们维护代码时,牵一发而动全身,很可能只是想改下评价相关的功能,却影响到了创单核心路径。虽然我们可以通过测试保证功能完备性,但当我们在订单领域有大量需求同时并行开发时,改动重叠、恶性循环、疲于奔命修改各种问题。

上述问题,归根到底在于系统架构不清晰,划分出来的模块内聚度低、高耦合。

有一种解决方案,按照演进式设计的理论,让系统的设计随着系统实现的增长而增长。我们不需要作提前设计,就让系统伴随业务成长而演进。这当然是可行的,敏捷实践中的重构、测试驱动设计及持续集成可以对付各种混乱问题。重构——保持行为不变的代码改善清除了不协调的局部设计,测试驱动设计确保对系统的更改不会导致系统丢失或破坏现有功能,持续集成则为团队提供了同一代码库。

在这三种实践中,重构是克服演进式设计中大杂烩问题的主力,通过在单独的类及方法级别上做一系列小步重构来完成。我们可以很容易重构出一个独立的类来放某些通用的逻辑,但是你会发现你很难给它一个业务上的含义,只能给予一个技术维度描绘的含义。这会带来什么问题呢?新同学并不总是知道对通用逻辑的改动或获取来自该类。显然,制定项目规范并不是好的idea。我们又闻到了代码即将腐败的味道。

事实上,你可能意识到问题之所在。在解决现实问题时,我们会将问题映射到脑海中的概念模型,在模型中解决问题,再将解决方案转换为实际的代码。上述问题在于我们解决了设计到代码之间的重构,但提炼出来的设计模型,并不具有实际的业务含义,这就导致在开发新需求时,其他同学并不能很自然地将业务问题映射到该设计模型。设计似乎变成了重构者的自娱自乐,代码继续腐败,重新重构……无休止的循环。

用DDD则可以很好地解决领域模型到设计模型的同步、演化,最后再将反映了领域的设计模型转为实际的代码。

注:模型是我们解决实际问题所抽象出来的概念模型,领域模型则表达与业务相关的事实;设计模型则描述了所要构建的系统。

贫血症和失忆症

贫血领域对象

贫血领域对象(Anemic Domain Object)是指仅用作数据载体,而没有行为和动作的领域对象。

在我们习惯了J2EE的开发模式后,Action/Service/DAO这种分层模式,会很自然地写出过程式代码,而学到的很多关于OO理论的也毫无用武之地。使用这种开发方式,对象只是数据的载体,没有行为。以数据为中心,以数据库ER设计作驱动。分层架构在这种开发模式下,可以理解为是对数据移动、处理和实现的过程。

以笔者最近开发的系统抽奖平台为例:

  • 场景需求

奖池里配置了很多奖项,我们需要按运营预先配置的概率抽中一个奖项。 实现非常简单,生成一个随机数,匹配符合该随机数生成概率的奖项即可。

  • 贫血模型实现方案

先设计奖池和奖项的库表配置。

抽奖ER图

抽奖ER图
  • 设计AwardPool和Award两个对象,只有简单的get和set属性的方法
class AwardPool {
    int awardPoolId;
    List<Award> awards;
    public List<Award> getAwards() {
        return awards;
    }
  
    public void setAwards(List<Award> awards) {
        this.awards = awards;
    }
    ......
}

class Award {
   int awardId;
   int probability;//概率
  
   ......
}
  • Service代码实现

设计一个LotteryService,在其中的drawLottery()方法写服务逻辑

AwardPool awardPool = awardPoolDao.getAwardPool(poolId);//sql查询,将数据映射到AwardPool对象
for (Award award : awardPool.getAwards()) {
   //寻找到符合award.getProbability()概率的award
}
  • 按照我们通常思路实现,可以发现:在业务领域里非常重要的抽奖,我的业务逻辑都是写在Service中的,Award充其量只是个数据载体,没有任何行为。简单的业务系统采用这种贫血模型和过程化设计是没有问题的,但在业务逻辑复杂了,业务逻辑、状态会散落到在大量方法中,原本的代码意图会渐渐不明确,我们将这种情况称为由贫血症引起的失忆症。

更好的是采用领域模型的开发方式,将数据和行为封装在一起,并与现实世界中的业务对象相映射。各类具备明确的职责划分,将领域逻辑分散到领域对象中。继续举我们上述抽奖的例子,使用概率选择对应的奖品就应当放到AwardPool类中。

软件系统复杂性应对

解决复杂和大规模软件的武器可以被粗略地归为三类:抽象、分治和知识。

分治 把问题空间分割为规模更小且易于处理的若干子问题。分割后的问题需要足够小,以便一个人单枪匹马就能够解决他们;其次,必须考虑如何将分割后的各个部分装配为整体。分割得越合理越易于理解,在装配成整体时,所需跟踪的细节也就越少。即更容易设计各部分的协作方式。评判什么是分治得好,即高内聚低耦合。

抽象 使用抽象能够精简问题空间,而且问题越小越容易理解。举个例子,从北京到上海出差,可以先理解为使用交通工具前往,但不需要一开始就想清楚到底是高铁还是飞机,以及乘坐他们需要注意什么。

知识 顾名思义,DDD可以认为是知识的一种。

DDD提供了这样的知识手段,让我们知道如何抽象出限界上下文以及如何去分治。

与微服务架构相得益彰

微服务架构众所周知,此处不做赘述。我们创建微服务时,需要创建一个高内聚、低耦合的微服务。而DDD中的限界上下文则完美匹配微服务要求,可以将该限界上下文理解为一个微服务进程。

上述是从更直观的角度来描述两者的相似处。

在系统复杂之后,我们都需要用分治来拆解问题。一般有两种方式,技术维度和业务维度。技术维度是类似MVC这样,业务维度则是指按业务领域来划分系统。

微服务架构更强调从业务维度去做分治来应对系统复杂度,而DDD也是同样的着重业务视角。 如果两者在追求的目标(业务维度)达到了上下文的统一,那么在具体做法上有什么联系和不同呢?

我们将架构设计活动精简为以下三个层面:

  • 业务架构——根据业务需求设计业务模块及其关系
  • 系统架构——设计系统和子系统的模块
  • 技术架构——决定采用的技术及框架

以上三种活动在实际开发中是有先后顺序的,但不一定孰先孰后。在我们解决常规套路问题时,我们会很自然地往熟悉的分层架构套(先确定系统架构),或者用PHP开发很快(先确定技术架构),在业务不复杂时,这样是合理的。

跳过业务架构设计出来的架构关注点不在业务响应上,可能就是个大泥球,在面临需求迭代或响应市场变化时就很痛苦。

DDD的核心诉求就是将业务架构映射到系统架构上,在响应业务变化调整业务架构时,也随之变化系统架构。而微服务追求业务层面的复用,设计出来的系统架构和业务一致;在技术架构上则系统模块之间充分解耦,可以自由地选择合适的技术架构,去中心化地治理技术和数据。

可以参见下图来更好地理解双方之间的协作关系:

DDD与微服务关系

DDD与微服务关系

我们将通过上文提到的抽奖平台,来详细介绍我们如何通过DDD来解构一个中型的基于微服务架构的系统,从而做到系统的高内聚、低耦合。

首先看下抽奖系统的大致需求: 运营——可以配置一个抽奖活动,该活动面向一个特定的用户群体,并针对一个用户群体发放一批不同类型的奖品(优惠券,激活码,实物奖品等)。 用户-通过活动页面参与不同类型的抽奖活动。

设计领域模型的一般步骤如下:

  1. 根据需求划分出初步的领域和限界上下文,以及上下文之间的关系;
  2. 进一步分析每个上下文内部,识别出哪些是实体,哪些是值对象;
  3. 对实体、值对象进行关联和聚合,划分出聚合的范畴和聚合根;
  4. 为聚合根设计仓储,并思考实体或值对象的创建方式;
  5. 在工程中实践领域模型,并在实践中检验模型的合理性,倒推模型中不足的地方并重构。

战略建模

战略和战术设计是站在DDD的角度进行划分。战略设计侧重于高层次、宏观上去划分和集成限界上下文,而战术设计则关注更具体使用建模工具来细化上下文。

领域

现实世界中,领域包含了问题域和解系统。一般认为软件是对现实世界的部分模拟。在DDD中,解系统可以映射为一个个限界上下文,限界上下文就是软件对于问题域的一个特定的、有限的解决方案。

限界上下文

限界上下文

一个由显示边界限定的特定职责。领域模型便存在于这个边界之内。在边界内,每一个模型概念,包括它的属性和操作,都具有特殊的含义。

一个给定的业务领域会包含多个限界上下文,想与一个限界上下文沟通,则需要通过显示边界进行通信。系统通过确定的限界上下文来进行解耦,而每一个上下文内部紧密组织,职责明确,具有较高的内聚性。

一个很形象的隐喻:细胞质所以能够存在,是因为细胞膜限定了什么在细胞内,什么在细胞外,并且确定了什么物质可以通过细胞膜。

划分限界上下文

划分限界上下文,不管是Eric Evans还是Vaughn Vernon,在他们的大作里都没有怎么提及。

显然我们不应该按技术架构或者开发任务来创建限界上下文,应该按照语义的边界来考虑。

我们的实践是,考虑产品所讲的通用语言,从中提取一些术语称之为概念对象,寻找对象之间的联系;或者从需求里提取一些动词,观察动词和对象之间的关系;我们将紧耦合的各自圈在一起,观察他们内在的联系,从而形成对应的界限上下文。形成之后,我们可以尝试用语言来描述下界限上下文的职责,看它是否清晰、准确、简洁和完整。简言之,限界上下文应该从需求出发,按领域划分。

前文提到,我们的用户划分为运营和用户。其中,运营对抽奖活动的配置十分复杂但相对低频。用户对这些抽奖活动配置的使用是高频次且无感知的。根据这样的业务特点,我们首先将抽奖平台划分为C端抽奖和M端抽奖管理平台两个子域,让两者完全解耦。

抽奖平台领域

抽奖平台领域

在确认了M端领域和C端的限界上下文后,我们再对各自上下文内部进行限界上下文的划分。下面我们用C端进行举例。

产品的需求概述如下:

1. 抽奖活动有活动限制,例如用户的抽奖次数限制,抽奖的开始和结束的时间等;
2. 一个抽奖活动包含多个奖品,可以针对一个或多个用户群体;
3. 奖品有自身的奖品配置,例如库存量,被抽中的概率等,最多被一个用户抽中的次数等等;
4. 用户群体有多种区别方式,如按照用户所在城市区分,按照新老客区分等;
5. 活动具有风控配置,能够限制用户参与抽奖的频率。

根据产品的需求,我们提取了一些关键性的概念作为子域,形成我们的限界上下文。

C端抽奖领域

C端抽奖领域

首先,抽奖上下文作为整个领域的核心,承担着用户抽奖的核心业务,抽奖中包含了奖品和用户群体的概念。

  • 在设计初期,我们曾经考虑划分出抽奖和发奖两个领域,前者负责选奖,后者负责将选中的奖品发放出去。但在实际开发过程中,我们发现这两部分的逻辑紧密连接,难以拆分。并且单纯的发奖逻辑足够简单,仅仅是调用第三方服务进行发奖,不足以独立出来成为一个领域。

对于活动的限制,我们定义了活动准入的通用语言,将活动开始/结束时间,活动可参与次数等限制条件都收拢到活动准入上下文中。

对于抽奖的奖品库存量,由于库存的行为与奖品本身相对解耦,库存关注点更多是库存内容的核销,且库存本身具备通用性,可以被奖品之外的内容使用,因此我们定义了独立的库存上下文。

由于C端存在一些刷单行为,我们根据产品需求定义了风控上下文,用于对活动进行风控。 最后,活动准入、风控、抽奖等领域都涉及到一些次数的限制,因此我们定义了计数上下文。

可以看到,通过DDD的限界上下文划分,我们界定出抽奖、活动准入、风控、计数、库存等五个上下文,每个上下文在系统中都高度内聚。

上下文映射图

在进行上下文划分之后,我们还需要进一步梳理上下文之间的关系。

康威(梅尔·康威)定律

任何组织在设计一套系统(广义概念上的系统)时,所交付的设计方案在结构上都与该组织的沟通结构保持一致。

康威定律告诉我们,系统结构应尽量的与组织结构保持一致。这里,我们认为团队结构(无论是内部组织还是团队间组织)就是组织结构,限界上下文就是系统的业务结构。因此,团队结构应该和限界上下文保持一致。

梳理清楚上下文之间的关系,从团队内部的关系来看,有如下好处:

  1. 任务更好拆分,一个开发人员可以全身心的投入到相关的一个单独的上下文中;
  2. 沟通更加顺畅,一个上下文可以明确自己对其他上下文的依赖关系,从而使得团队内开发直接更好的对接。

从团队间的关系来看,明确的上下文关系能够带来如下帮助:

  1. 每个团队在它的上下文中能够更加明确自己领域内的概念,因为上下文是领域的解系统;
  2. 对于限界上下文之间发生交互,团队与上下文的一致性,能够保证我们明确对接的团队和依赖的上下游。

限界上下文之间的映射关系

  • 合作关系(Partnership):两个上下文紧密合作的关系,一荣俱荣,一损俱损。
  • 共享内核(Shared Kernel):两个上下文依赖部分共享的模型。
  • 客户方-供应方开发(Customer-Supplier Development):上下文之间有组织的上下游依赖。
  • 遵奉者(Conformist):下游上下文只能盲目依赖上游上下文。
  • 防腐层(Anticorruption Layer):一个上下文通过一些适配和转换与另一个上下文交互。
  • 开放主机服务(Open Host Service):定义一种协议来让其他上下文来对本上下文进行访问。
  • 发布语言(Published Language):通常与OHS一起使用,用于定义开放主机的协议。
  • 大泥球(Big Ball of Mud):混杂在一起的上下文关系,边界不清晰。
  • 另谋他路(SeparateWay):两个完全没有任何联系的上下文。

上文定义了上下文映射间的关系,经过我们的反复斟酌,抽奖平台上下文的映射关系图如下:

上下文映射关系

上下文映射关系

由于抽奖,风控,活动准入,库存,计数五个上下文都处在抽奖领域的内部,所以它们之间符合“一荣俱荣,一损俱损”的合作关系(PartnerShip,简称PS)。

同时,抽奖上下文在进行发券动作时,会依赖券码、平台券、外卖券三个上下文。抽奖上下文通过防腐层(Anticorruption Layer,ACL)对三个上下文进行了隔离,而三个券上下文通过开放主机服务(Open Host Service)作为发布语言(Published Language)对抽奖上下文提供访问机制。

通过上下文映射关系,我们明确的限制了限界上下文的耦合性,即在抽奖平台中,无论是上下文内部交互(合作关系)还是与外部上下文交互(防腐层),耦合度都限定在数据耦合(Data Coupling)的层级。

战术建模——细化上下文

梳理清楚上下文之间的关系后,我们需要从战术层面上剖析上下文内部的组织关系。首先看下DDD中的一些定义。

实体

当一个对象由其标识(而不是属性)区分时,这种对象称为实体(Entity)。

例:最简单的,公安系统的身份信息录入,对于人的模拟,即认为是实体,因为每个人是独一无二的,且其具有唯一标识(如公安系统分发的身份证号码)。

在实践上建议将属性的验证放到实体中。

值对象

当一个对象用于对事务进行描述而没有唯一标识时,它被称作值对象(Value Object)。

例:比如颜色信息,我们只需要知道{“name”:“黑色”,”css”:“#000000”}这样的值信息就能够满足要求了,这避免了我们对标识追踪带来的系统复杂性。

值对象很重要,在习惯了使用数据库的数据建模后,很容易将所有对象看作实体。使用值对象,可以更好地做系统优化、精简设计。

它具有不变性、相等性和可替换性。

在实践中,需要保证值对象创建后就不能被修改,即不允许外部再修改其属性。在不同上下文集成时,会出现模型概念的公用,如商品模型会存在于电商的各个上下文中。在订单上下文中如果你只关注下单时商品信息快照,那么将商品对象视为值对象是很好的选择。

聚合根

Aggregate(聚合)是一组相关对象的集合,作为一个整体被外界访问,聚合根(Aggregate Root)是这个聚合的根节点。

聚合是一个非常重要的概念,核心领域往往都需要用聚合来表达。其次,聚合在技术上有非常高的价值,可以指导详细设计。

聚合由根实体,值对象和实体组成。

如何创建好的聚合?

  • 边界内的内容具有一致性:在一个事务中只修改一个聚合实例。如果你发现边界内很难接受强一致,不管是出于性能或产品需求的考虑,应该考虑剥离出独立的聚合,采用最终一致的方式。
  • 设计小聚合:大部分的聚合都可以只包含根实体,而无需包含其他实体。即使一定要包含,可以考虑将其创建为值对象。
  • 通过唯一标识来引用其他聚合或实体:当存在对象之间的关联时,建议引用其唯一标识而非引用其整体对象。如果是外部上下文中的实体,引用其唯一标识或将需要的属性构造值对象。 如果聚合创建复杂,推荐使用工厂方法来屏蔽内部复杂的创建逻辑。

聚合内部多个组成对象的关系可以用来指导数据库创建,但不可避免存在一定的抗阻。如聚合中存在List<值对象>,那么在数据库中建立1:N的关联需要将值对象单独建表,此时是有id的,建议不要将该id暴露到资源库外部,对外隐蔽。

领域服务

一些重要的领域行为或操作,可以归类为领域服务。它既不是实体,也不是值对象的范畴。

当我们采用了微服务架构风格,一切领域逻辑的对外暴露均需要通过领域服务来进行。如原本由聚合根暴露的业务逻辑也需要依托于领域服务。

领域事件

领域事件是对领域内发生的活动进行的建模。

抽奖平台的核心上下文是抽奖上下文,接下来介绍下我们对抽奖上下文的建模。

抽奖上下文

抽奖上下文

在抽奖上下文中,我们通过抽奖(DrawLottery)这个聚合根来控制抽奖行为,可以看到,一个抽奖包括了抽奖ID(LotteryId)以及多个奖池(AwardPool),而一个奖池针对一个特定的用户群体(UserGroup)设置了多个奖品(Award)。

另外,在抽奖领域中,我们还会使用抽奖结果(SendResult)作为输出信息,使用用户领奖记录(UserLotteryLog)作为领奖凭据和存根。

谨慎使用值对象

在实践中,我们发现虽然一些领域对象符合值对象的概念,但是随着业务的变动,很多原有的定义会发生变更,值对象可能需要在业务意义具有唯一标识,而对这类值对象的重构往往需要较高成本。因此在特定的情况下,我们也要根据实际情况来权衡领域对象的选型。

DDD工程实现

在对上下文进行细化后,我们开始在工程中真正落地DDD。

模块

模块(Module)是DDD中明确提到的一种控制限界上下文的手段,在我们的工程中,一般尽量用一个模块来表示一个领域的限界上下文。

如代码中所示,一般的工程中包的组织方式为{com.公司名.组织架构.业务.上下文.*},这样的组织结构能够明确的将一个上下文限定在包的内部。

import com.company.team.bussiness.lottery.*;//抽奖上下文
import com.company.team.bussiness.riskcontrol.*;//风控上下文
import com.company.team.bussiness.counter.*;//计数上下文
import com.company.team.bussiness.condition.*;//活动准入上下文
import com.company.team.bussiness.stock.*;//库存上下文

代码演示1 模块的组织

对于模块内的组织结构,一般情况下我们是按照领域对象、领域服务、领域资源库、防腐层等组织方式定义的。

import com.company.team.bussiness.lottery.domain.valobj.*;//领域对象-值对象
import com.company.team.bussiness.lottery.domain.entity.*;//领域对象-实体
import com.company.team.bussiness.lottery.domain.aggregate.*;//领域对象-聚合根
import com.company.team.bussiness.lottery.service.*;//领域服务
import com.company.team.bussiness.lottery.repo.*;//领域资源库
import com.company.team.bussiness.lottery.facade.*;//领域防腐层

代码演示2 模块的组织

每个模块的具体实现,我们将在下文中展开。

领域对象

前文提到,领域驱动要解决的一个重要的问题,就是解决对象的贫血问题。这里我们用之前定义的抽奖(DrawLottery)聚合根和奖池(AwardPool)值对象来具体说明。

抽奖聚合根持有了抽奖活动的id和该活动下的所有可用奖池列表,它的一个最主要的领域功能就是根据一个抽奖发生场景(DrawLotteryContext),选择出一个适配的奖池,即chooseAwardPool方法。

chooseAwardPool的逻辑是这样的:DrawLotteryContext会带有用户抽奖时的场景信息(抽奖得分或抽奖时所在的城市),DrawLottery会根据这个场景信息,匹配一个可以给用户发奖的AwardPool。

package com.company.team.bussiness.lottery.domain.aggregate;
import ...;
  
public class DrawLottery {
    private int lotteryId; //抽奖id
    private List<AwardPool> awardPools; //奖池列表
  
    //getter & setter
    public void setLotteryId(int lotteryId) {
        if(id<=0){
            throw new IllegalArgumentException("非法的抽奖id"); 
        }
        this.lotteryId = lotteryId;
    }
  
    //根据抽奖入参context选择奖池
    public AwardPool chooseAwardPool(DrawLotteryContext context) {
        if(context.getMtCityInfo()!=null) {
            return chooseAwardPoolByCityInfo(awardPools, context.getMtCityInfo());
        } else {
            return chooseAwardPoolByScore(awardPools, context.getGameScore());
        }
    }
     
    //根据抽奖所在城市选择奖池
    private AwardPool chooseAwardPoolByCityInfo(List<AwardPool> awardPools, MtCifyInfo cityInfo) {
        for(AwardPool awardPool: awardPools) {
            if(awardPool.matchedCity(cityInfo.getCityId())) {
                return awardPool;
            }
        }
        return null;
    }
  
    //根据抽奖活动得分选择奖池
    private AwardPool chooseAwardPoolByScore(List<AwardPool> awardPools, int gameScore) {...}
}

代码演示3 DrawLottery

在匹配到一个具体的奖池之后,需要确定最后给用户的奖品是什么。这部分的领域功能在AwardPool内。

package com.company.team.bussiness.lottery.domain.valobj;
import ...;
  
public class AwardPool {
    private String cityIds;//奖池支持的城市
    private String scores;//奖池支持的得分
    private int userGroupType;//奖池匹配的用户类型
    private List<Awrad> awards;//奖池中包含的奖品
  
    //当前奖池是否与城市匹配
    public boolean matchedCity(int cityId) {...}
  
    //当前奖池是否与用户得分匹配
    public boolean matchedScore(int score) {...}
  
    //根据概率选择奖池
    public Award randomGetAward() {
        int sumOfProbablity = 0;
        for(Award award: awards) {
            sumOfProbability += award.getAwardProbablity();
        }
        int randomNumber = ThreadLocalRandom.current().nextInt(sumOfProbablity);
        range = 0;
        for(Award award: awards) {
            range += award.getProbablity();
            if(randomNumber<range) {
                return award;
            }
        }
        return null;
    }
}

代码演示4 AwardPool

与以往的仅有getter、setter的业务对象不同,领域对象具有了行为,对象更加丰满。同时,比起将这些逻辑写在服务内(例如**Service),领域功能的内聚性更强,职责更加明确。

资源库

领域对象需要资源存储,存储的手段可以是多样化的,常见的无非是数据库,分布式缓存,本地缓存等。资源库(Repository)的作用,就是对领域的存储和访问进行统一管理的对象。在抽奖平台中,我们是通过如下的方式组织资源库的。

//数据库资源
import com.company.team.bussiness.lottery.repo.dao.AwardPoolDao;//数据库访问对象-奖池
import com.company.team.bussiness.lottery.repo.dao.AwardDao;//数据库访问对象-奖品
import com.company.team.bussiness.lottery.repo.dao.po.AwardPO;//数据库持久化对象-奖品
import com.company.team.bussiness.lottery.repo.dao.po.AwardPoolPO;//数据库持久化对象-奖池
  
import com.company.team.bussiness.lottery.repo.cache.DrawLotteryCacheAccessObj;//分布式缓存访问对象-抽奖缓存访问
import com.company.team.bussiness.lottery.repo.repository.DrawLotteryRepository;//资源库访问对象-抽奖资源库

代码演示5 Repository组织结构

资源库对外的整体访问由Repository提供,它聚合了各个资源库的数据信息,同时也承担了资源存储的逻辑(例如缓存更新机制等)。

在抽奖资源库中,我们屏蔽了对底层奖池和奖品的直接访问,而是仅对抽奖的聚合根进行资源管理。代码示例中展示了抽奖资源获取的方法(最常见的Cache Aside Pattern)。

比起以往将资源管理放在服务中的做法,由资源库对资源进行管理,职责更加明确,代码的可读性和可维护性也更强。

package com.company.team.bussiness.lottery.repo;
import ...;
  
@Repository
public class DrawLotteryRepository {
    @Autowired
    private AwardDao awardDao;
    @Autowired
    private AwardPoolDao awardPoolDao;
    @AutoWired
    private DrawLotteryCacheAccessObj drawLotteryCacheAccessObj;
  
    public DrawLottery getDrawLotteryById(int lotteryId) {
        DrawLottery drawLottery = drawLotteryCacheAccessObj.get(lotteryId);
        if(drawLottery!=null){
            return drawLottery;
        }
        drawLottery = getDrawLotteyFromDB(lotteryId);
        drawLotteryCacheAccessObj.add(lotteryId, drawLottery);
        return drawLottery;
    }
  
    private DrawLottery getDrawLotteryFromDB(int lotteryId) {...}
}

代码演示6 DrawLotteryRepository

防腐层

亦称适配层。在一个上下文中,有时需要对外部上下文进行访问,通常会引入防腐层的概念来对外部上下文的访问进行一次转义。

有以下几种情况会考虑引入防腐层:

  • 需要将外部上下文中的模型翻译成本上下文理解的模型。
  • 不同上下文之间的团队协作关系,如果是供奉者关系,建议引入防腐层,避免外部上下文变化对本上下文的侵蚀。
  • 该访问本上下文使用广泛,为了避免改动影响范围过大。

如果内部多个上下文对外部上下文需要访问,那么可以考虑将其放到通用上下文中。

在抽奖平台中,我们定义了用户城市信息防腐层(UserCityInfoFacade),用于外部的用户城市信息上下文(微服务架构下表现为用户城市信息服务)。

以用户信息防腐层举例,它以抽奖请求参数(LotteryContext)为入参,以城市信息(MtCityInfo)为输出。

package com.company.team.bussiness.lottery.facade;
import ...;
  
@Component
public class UserCityInfoFacade {
    @Autowired
    private LbsService lbsService;//外部用户城市信息RPC服务
     
    public MtCityInfo getMtCityInfo(LotteryContext context) {
        LbsReq lbsReq = new LbsReq();
        lbsReq.setLat(context.getLat());
        lbsReq.setLng(context.getLng());
        LbsResponse resp = lbsService.getLbsCityInfo(lbsReq);
        return buildMtCifyInfo(resp);
    }
  
    private MtCityInfo buildMtCityInfo(LbsResponse resp) {...}
}

代码演示7 UserCityInfoFacade

领域服务

上文中,我们将领域行为封装到领域对象中,将资源管理行为封装到资源库中,将外部上下文的交互行为封装到防腐层中。此时,我们再回过头来看领域服务时,能够发现领域服务本身所承载的职责也就更加清晰了,即就是通过串联领域对象、资源库和防腐层等一系列领域内的对象的行为,对其他上下文提供交互的接口。

我们以抽奖服务为例(issueLottery),可以看到在省略了一些防御性逻辑(异常处理,空值判断等)后,领域服务的逻辑已经足够清晰明了。

package com.company.team.bussiness.lottery.service.impl
import ...;
  
@Service
public class LotteryServiceImpl implements LotteryService {
    @Autowired
    private DrawLotteryRepository drawLotteryRepo;
    @Autowired
    private UserCityInfoFacade UserCityInfoFacade;
    @Autowired
    private AwardSendService awardSendService;
    @Autowired
    private AwardCounterFacade awardCounterFacade;
  
    @Override
    public IssueResponse issueLottery(LotteryContext lotteryContext) {
        DrawLottery drawLottery = drawLotteryRepo.getDrawLotteryById(lotteryContext.getLotteryId());//获取抽奖配置聚合根
        awardCounterFacade.incrTryCount(lotteryContext);//增加抽奖计数信息
        AwardPool awardPool = lotteryConfig.chooseAwardPool(bulidDrawLotteryContext(drawLottery, lotteryContext));//选中奖池
        Award award = awardPool.randomChooseAward();//选中奖品
        return buildIssueResponse(awardSendService.sendAward(award, lotteryContext));//发出奖品实体
    }
  
    private IssueResponse buildIssueResponse(AwardSendResponse awardSendResponse) {...}
}

代码演示8 LotteryService

数据流转

数据流转

数据流转

在抽奖平台的实践中,我们的数据流转如上图所示。 首先领域的开放服务通过信息传输对象(DTO)来完成与外界的数据交互;在领域内部,我们通过领域对象(DO)作为领域内部的数据和行为载体;在资源库内部,我们沿袭了原有的数据库持久化对象(PO)进行数据库资源的交互。同时,DTO与DO的转换发生在领域服务内,DO与PO的转换发生在资源库内。

与以往的业务服务相比,当前的编码规范可能多造成了一次数据转换,但每种数据对象职责明确,数据流转更加清晰。

上下文集成

通常集成上下文的手段有多种,常见的手段包括开放领域服务接口、开放HTTP服务以及消息发布-订阅机制。

在抽奖系统中,我们使用的是开放服务接口进行交互的。最明显的体现是计数上下文,它作为一个通用上下文,对抽奖、风控、活动准入等上下文都提供了访问接口。 同时,如果在一个上下文对另一个上下文进行集成时,若需要一定的隔离和适配,可以引入防腐层的概念。这一部分的示例可以参考前文的防腐层代码示例。

分离领域

接下来讲解在实施领域模型的过程中,如何应用到系统架构中。

我们采用的微服务架构风格,与Vernon在《实现领域驱动设计》并不太一致,更具体差异可阅读他的书体会。

如果我们维护一个从前到后的应用系统:

下图中领域服务是使用微服务技术剥离开来,独立部署,对外暴露的只能是服务接口,领域对外暴露的业务逻辑只能依托于领域服务。而在Vernon著作中,并未假定微服务架构风格,因此领域层暴露的除了领域服务外,还有聚合、实体和值对象等。此时的应用服务层是比较简单的,获取来自接口层的请求参数,调度多个领域服务以实现界面层功能。

DDD-分层

DDD-分层

随着业务发展,业务系统快速膨胀,我们的系统属于核心时:

应用服务虽然没有领域逻辑,但涉及到了对多个领域服务的编排。当业务规模庞大到一定程度,编排本身就富含了业务逻辑(除此之外,应用服务在稳定性、性能上所做的措施也希望统一起来,而非散落各处),那么此时应用服务对于外部来说是一个领域服务,整体看起来则是一个独立的限界上下文。

此时应用服务对内还属于应用服务,对外已是领域服务的概念,需要将其暴露为微服务。

DDD-系统架构图

DDD-系统架构图

注:具体的架构实践可按照团队和业务的实际情况来,此处仅为作者自身的业务实践。除分层架构外,如CQRS架构也是不错的选择

以下是一个示例。我们定义了抽奖、活动准入、风险控制等多个领域服务。在本系统中,我们需要集成多个领域服务,为客户端提供一套功能完备的抽奖应用服务。这个应用服务的组织如下:

package ...;
  
import ...;
  
@Service
public class LotteryApplicationService {
    @Autowired
    private LotteryRiskService riskService;
    @Autowired
    private LotteryConditionService conditionService;
    @Autowired
    private LotteryService lotteryService;
     
    //用户参与抽奖活动
    public Response<PrizeInfo, ErrorData> participateLottery(LotteryContext lotteryContext) {
        //校验用户登录信息
        validateLoginInfo(lotteryContext);
        //校验风控 
        RiskAccessToken riskToken = riskService.accquire(buildRiskReq(lotteryContext));
        ...
        //活动准入检查
        LotteryConditionResult conditionResult = conditionService.checkLotteryCondition(otteryContext.getLotteryId(),lotteryContext.getUserId());
        ...
        //抽奖并返回结果
        IssueResponse issueResponse = lotteryService.issurLottery(lotteryContext);
        if(issueResponse!=null && issueResponse.getCode()==IssueResponse.OK) {
            return buildSuccessResponse(issueResponse.getPrizeInfo());
        } else {   
            return buildErrorResponse(ResponseCode.ISSUE_LOTTERY_FAIL, ResponseMsg.ISSUE_LOTTERY_FAIL)
        }
    }
  
    private void validateLoginInfo(LotteryContext lotteryContext){...}
    private Response<PrizeInfo, ErrorData> buildErrorResponse (int code, String msg){...}
    private Response<PrizeInfo, ErrorData> buildSuccessResponse (PrizeInfo prizeInfo){...}
} 

代码演示9 LotteryApplicationService

在本文中,我们采用了分治的思想,从抽象到具体阐述了DDD在互联网真实业务系统中的实践。通过领域驱动设计这个强大的武器,我们将系统解构的更加合理。

但值得注意的是,如果你面临的系统很简单或者做一些SmartUI之类,那么你不一定需要DDD。尽管本文对贫血模型、演进式设计提出了些许看法,但它们在特定范围和具体场景下会更高效。读者需要针对自己的实际情况,做一定取舍,适合自己的才是最好的。

引用地址:https://tech.meituan.com/2017/12/22/ddd-in-practice.html

WebSocket: The remote endpoint was in state [TEXT_FULL_WRITING] which is an invalid state for called method

使用WebSocket做APP的通知服务,但是批量推送的时候报错:The remote endpoint was in state [TEXT_FULL_WRITING] which is an invalid state for called method

2021/08/05 09:45:34.364 INFO [task-33261] Base : ===> 收到消息转发给APP(userId=107):{“messageId”:”c73f2e6f-3c36-48a6-91ae-a59854aa992e”}
2021/08/05 09:45:34.365 INFO [task-33261] Base : 发送数据 -> 开始
2021/08/05 09:45:34.389 ERROR [task-33261] o.s.a.i.SimpleAsyncUncaughtExceptionHandler : Unexpected exception occurred invoking async method: public void com.ikonke.ws.system.bus.EventSenderListener.onApplicationEvent(com.ikonke.ws.system.bus.event.EventSender)
java.lang.IllegalStateException: The remote endpoint was in state [TEXT_FULL_WRITING] which is an invalid state for called method
at org.apache.tomcat.websocket.WsRemoteEndpointImplBase$StateMachine.checkState(WsRemoteEndpointImplBase.java:1258) ~[tomcat-embed-websocket-9.0.41.jar!/:9.0.41]
at org.apache.tomcat.websocket.WsRemoteEndpointImplBase$StateMachine.textStart(WsRemoteEndpointImplBase.java:1220) ~[tomcat-embed-websocket-9.0.41.jar!/:9.0.41]
at org.apache.tomcat.websocket.WsRemoteEndpointImplBase.sendString(WsRemoteEndpointImplBase.java:191) ~[tomcat-embed-websocket-9.0.41.jar!/:9.0.41]
at org.apache.tomcat.websocket.WsRemoteEndpointBasic.sendText(WsRemoteEndpointBasic.java:37) ~[tomcat-embed-websocket-9.0.41.jar!/:9.0.41]
at com.ikonke.ws.socket.WSHandler.sendMessage(WSHandler.java:104) ~[classes!/:0.0.1-SNAPSHOT]
at com.ikonke.ws.system.bus.EventSenderListener.onApplicationEvent(EventSenderListener.java:69) ~[classes!/:0.0.1-SNAPSHOT]
at com.ikonke.ws.system.bus.EventSenderListener.onApplicationEvent(EventSenderListener.java:25) ~[classes!/:0.0.1-SNAPSHOT]
at com.ikonke.ws.system.bus.EventSenderListener$$FastClassBySpringCGLIB$$a5414582.invoke(<generated>) ~[classes!/:0.0.1-SNAPSHOT]
at org.springframework.cglib.proxy.MethodProxy.invoke(MethodProxy.java:218) ~[spring-core-5.2.12.RELEASE.jar!/:5.2.12.RELEASE]
at org.springframework.aop.framework.CglibAopProxy$CglibMethodInvocation.invokeJoinpoint(CglibAopProxy.java:771) ~[spring-aop-5.2.12.RELEASE.jar!/:5.2.12.RELEASE]
at org.springframework.aop.framework.ReflectiveMethodInvocation.proceed(ReflectiveMethodInvocation.java:163) ~[spring-aop-5.2.12.RELEASE.jar!/:5.2.12.RELEASE]
at org.springframework.aop.framework.CglibAopProxy$CglibMethodInvocation.proceed(CglibAopProxy.java:749) ~[spring-aop-5.2.12.RELEASE.jar!/:5.2.12.RELEASE]
at org.springframework.aop.aspectj.MethodInvocationProceedingJoinPoint.proceed(MethodInvocationProceedingJoinPoint.java:88) ~[spring-aop-5.2.12.RELEASE.jar!/:5.2.12.RELEASE]
at org.springframework.cloud.sleuth.instrument.async.TraceAsyncAspect.traceBackgroundThread(TraceAsyncAspect.java:70) ~[spring-cloud-sleuth-core-2.2.6.RELEASE.jar!/:2.2.6.RELEASE]
at sun.reflect.GeneratedMethodAccessor78.invoke(Unknown Source) ~[na:na]
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) ~[na:1.8.0_171]
at java.lang.reflect.Method.invoke(Method.java:498) ~[na:1.8.0_171]
at org.springframework.aop.aspectj.AbstractAspectJAdvice.invokeAdviceMethodWithGivenArgs(AbstractAspectJAdvice.java:644) ~[spring-aop-5.2.12.RELEASE.jar!/:5.2.12.RELEASE]
at org.springframework.aop.aspectj.AbstractAspectJAdvice.invokeAdviceMethod(AbstractAspectJAdvice.java:633) ~[spring-aop-5.2.12.RELEASE.jar!/:5.2.12.RELEASE]
at org.springframework.aop.aspectj.AspectJAroundAdvice.invoke(AspectJAroundAdvice.java:70) ~[spring-aop-5.2.12.RELEASE.jar!/:5.2.12.RELEASE]
at org.springframework.aop.framework.ReflectiveMethodInvocation.proceed(ReflectiveMethodInvocation.java:186) ~[spring-aop-5.2.12.RELEASE.jar!/:5.2.12.RELEASE]
at org.springframework.aop.framework.CglibAopProxy$CglibMethodInvocation.proceed(CglibAopProxy.java:749) ~[spring-aop-5.2.12.RELEASE.jar!/:5.2.12.RELEASE]
at org.springframework.aop.interceptor.ExposeInvocationInterceptor.invoke(ExposeInvocationInterceptor.java:95) ~[spring-aop-5.2.12.RELEASE.jar!/:5.2.12.RELEASE]
at org.springframework.aop.framework.ReflectiveMethodInvocation.proceed(ReflectiveMethodInvocation.java:186) ~[spring-aop-5.2.12.RELEASE.jar!/:5.2.12.RELEASE]
at org.springframework.aop.framework.CglibAopProxy$CglibMethodInvocation.proceed(CglibAopProxy.java:749) ~[spring-aop-5.2.12.RELEASE.jar!/:5.2.12.RELEASE]
at org.springframework.aop.interceptor.AsyncExecutionInterceptor.lambda$invoke$0(AsyncExecutionInterceptor.java:115) ~[spring-aop-5.2.12.RELEASE.jar!/:5.2.12.RELEASE]
at java.util.concurrent.FutureTask.run(FutureTask.java:266) ~[na:1.8.0_171]
at org.springframework.cloud.sleuth.instrument.async.TraceRunnable.run(TraceRunnable.java:68) ~[spring-cloud-sleuth-core-2.2.6.RELEASE.jar!/:2.2.6.RELEASE]
at org.springframework.cloud.sleuth.instrument.async.TraceRunnable.run(TraceRunnable.java:68) ~[spring-cloud-sleuth-core-2.2.6.RELEASE.jar!/:2.2.6.RELEASE]
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) ~[na:1.8.0_171]
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) ~[na:1.8.0_171]
at java.lang.Thread.run(Thread.java:748) ~[na:1.8.0_171]

TEXT_FULL_WRITING的状态是当前会话正在输出数据,那么需要将send的方法改为同步,如下:

public synchronized void sendMessage(Session session, String message) {
    try {
        logger("发送数据 ->  开始");
        session.getBasicRemote().sendText(message);
        logger("发送数据 -> 成功");
    } catch (IOException e) {
        e.printStackTrace();
    }
}

 

归并排序算法详解

基本思想

归并排序(MERGE-SORT)是利用归并的思想实现的排序方法,该算法采用经典的分治策略。

将问题分(divide)成一些小的问题然后递归求解

则将分的阶段得到数据进行加工处理,最终形成一个有顺序的序列,这就是分而治之

如下图:1626941416-5987-20161218163120151-452283750

可以看到这种结构很像一棵完全二叉树,归并排序可以使用迭代、递归的方式去实现,这里采用递归;

合并相邻序列

再来看看治阶段,将两个已经有序的子序列合并成一个有序序列,要将[4,5,7,8]和[1,2,3,6]两个已经有序的子序列,合并为最终序列[1,2,3,4,5,6,7,8],实现步骤:

1626941416-4265-20161218194508761-468169540

1626941416-8699-20161218194621308-588010220

代码实现

package com.ikonke.openapi;

import java.util.Arrays;


public class Test2 {
    public static void main(String[] args) {
        int[] arr = {9, 8, 7, 6, 5, 4, 3, 2, 1};
        sort(arr);
        System.out.println(Arrays.toString(arr));
    }

    /**
     * 排序递归的方法
     *
     * @param arr
     */
    public static void sort(int[] arr) {
        /**
         * 临时数组
         */
        int[] temp = new int[arr.length];
        sort(arr, 0, arr.length - 1, temp);
    }

    /**
     * 分治的方法
     *
     * @param arr
     * @param left
     * @param right
     * @param temp
     */
    private static void sort(int[] arr, int left, int right, int[] temp) {
        if (left < right) {
            //从数组中间开始
            int mid = (left + right) / 2;
            //左边归并排序,使得左子序列有序
            sort(arr, left, mid, temp);

            //右边归并排序,使得右子序列有序
            sort(arr, mid + 1, right, temp);

            //将两个有序子数组合并操作
            merge(arr, left, mid, right, temp);
        }
    }

    /**
     * 数组合并
     *
     * @param arr   原数组
     * @param left
     * @param mid
     * @param right
     * @param temp  临时数组
     */
    private static void merge(int[] arr, int left, int mid, int right, int[] temp) {
        int i = left;//左指针
        int j = mid + 1;//右指针
        int t = 0;//临时数组指针
        while (i <= mid && j <= right) {
            if (arr[i] <= arr[j]) {
                temp[t++] = arr[i++];
            } else {
                temp[t++] = arr[j++];
            }
        }
        while (i <= mid) {//将左边数组赋值到临时数组
            temp[t++] = arr[i++];
        }
        while (j <= right) {//将右边数组赋值到临时数组
            temp[t++] = arr[j++];
        }
        t = 0;
        //数组拷贝替换
        while (left <= right) {
            arr[left++] = temp[t++];
        }
    }
}

执行结果

[1, 2, 3, 4, 5, 6, 7, 8, 9]

总结

归并排序是稳定排序,也是一种十分高效的排序,当进行大数据排序的时候使用归并效率会高很多,如果只有>50个数组,我认为还是使用插入排序、冒泡排序之类的,会合适些。

从上文的图中可看出,每次合并操作的平均时间复杂度为O(n),而完全二叉树的深度为|log2n|。总的平均时间复杂度为O(nlogn)。而且,归并排序的最好,最坏,平均时间复杂度均为O(nlogn)。

堆排序算法详解

概念

堆排序是利用堆这种数据结构而设计的一种排序算法,堆排序是一种选择排序,它的最坏,最好,平均时间复杂度均为O(nlogn),它也是不稳定排序。首先简单了解下堆结构。

堆是具有以下性质的完全二叉树:

每个结点的值都大于或等于其左右孩子结点的值,称为大顶堆;

或每个结点的值都小于或等于其左右孩子结点的值,称为小顶堆。

如下图:

1626920600-8986-20161217182750011-675658660

同时,我们对堆中的结点按层进行编号,将这种逻辑结构映射到数组中就是下面这个样子

1626920600-3203-20161217182857323-2092264199

该数组从逻辑上讲就是一个堆结构,我们用简单的公式来描述一下堆的定义就是:

大顶堆:arr[i] >= arr[2i+1] && arr[i] >= arr[2i+2]

小顶堆:arr[i] <= arr[2i+1] && arr[i] <= arr[2i+2]

接下来,看看堆排序的基本思想及基本步骤:

基本思想

将待排序序列构造成一个大顶堆,此时,整个序列的最大值就是堆顶的根节点。将其与末尾元素进行交换,此时末尾就为最大值。然后将剩余n-1个元素重新构造成一个堆,这样会得到n个元素的次小值。如此反复执行,便能得到一个有序序列。

步骤

1.构造初始堆

将给定无序序列构造成一个大顶堆(一般升序采用大顶堆,降序采用小顶堆)。假设给定无序序列结构如下:

1626920600-4223-20161217192038651-934327647

从最后一个非叶子结点开始,叶结点自然不用调整,第一个非叶子结点 arr.length/2-1=5/2-1=1,也就是下面的6结点,从左至右,从下至上进行调整。

1626920600-2305-20161217192209433-270379236

找到第二个非叶节点4,由于[4,9,8]中9元素最大,4和9交换。

1626920600-5824-20161217192854636-1823585260

这时,交换导致了子根[4,5,6]结构混乱,继续调整,[4,5,6]中6最大,交换4和6。

1626920600-9719-20161217193347886-1142194411

此时,就将一个无需序列构造成了一个大顶堆。

2.将堆顶元素与末尾元素进行交换,使末尾元素最大。然后继续调整堆,再将堆顶元素与末尾元素交换,得到第二大元素。如此反复进行交换、重建、交换。

将堆顶元素9和末尾元素4进行交换

1626920608-5605-20161217194207620-1455153342

重新调整结构,使其继续满足堆定义:

1626920610-9242-20161218153110495-1280388728

再将堆顶元素8与末尾元素5进行交换,得到第二大元素8.

1626920614-9891-20161218152929339-1114983222

后续过程,继续进行调整,交换,如此反复进行,最终使得整个序列有序

1626920614-5968-20161218152348229-935654830

总结堆排序的基本思路:

  • 将无需序列构建成一个堆,根据升序降序需求选择大顶堆或小顶堆;
  • 将堆顶元素与末尾元素交换,将最大元素”沉”到数组末端;
  • 重新调整结构,使其满足堆定义,然后继续交换堆顶元素与当前末尾元素,反复执行调整+交换步骤,直到整个序列有序。

代码

import java.util.Arrays;

public class Test2 {
    public static void main(String[] args) {
        
        int[] arr = {9, 8, 7, 6, 5, 4, 3, 2, 1};
        sort(arr);
        System.out.println(Arrays.toString(arr));
    }

    public static void sort(int[] arr) {
        //1.构建大顶堆
        for (int i = arr.length / 2 - 1; i >= 0; i--) {
            //从第一个非叶子结点从下至上,从右至左调整结构
            adjustHeap(arr, i, arr.length);
        }
        //2.调整堆结构+交换堆顶元素与末尾元素
        for (int j = arr.length - 1; j > 0; j--) {
            swap(arr, 0, j);//将堆顶元素与末尾元素进行交换
            adjustHeap(arr, 0, j);//重新对堆进行调整
        }

    }

    /**
     * 调整大顶堆(仅是调整过程,建立在大顶堆已构建的基础上)
     *
     * @param arr
     * @param i
     * @param length
     */
    public static void adjustHeap(int[] arr, int i, int length) {
        int temp = arr[i];//先取出当前元素i
        for (int k = i * 2 + 1; k < length; k = k * 2 + 1) {//从i结点的左子结点开始,也就是2i+1处开始
            if (k + 1 < length && arr[k] < arr[k + 1]) {//如果左子结点小于右子结点,k指向右子结点
                k++;
            }
            if (arr[k] > temp) {//如果子节点大于父节点,将子节点值赋给父节点(不用进行交换)
                arr[i] = arr[k];
                i = k;
            } else {
                break;
            }
        }
        arr[i] = temp;//将temp值放到最终的位置
    }

    /**
     * 交换元素
     *
     * @param arr
     * @param a
     * @param b
     */
    public static void swap(int[] arr, int a, int b) {
        int temp = arr[a];
        arr[a] = arr[b];
        arr[b] = temp;
    }
}

结果:

[1, 2, 3, 4, 5, 6, 7, 8, 9]

最后

堆排序是一种选择排序,整体主要由:构建初始堆 + 交换堆顶元素和末尾元素并重建堆两部分组成。其中构建初始堆经推导复杂度为O(n),在交换并重建堆的过程中,需交换n-1次,而重建堆的过程中,根据完全二叉树的性质,[log2(n-1),log2(n-2)…1]逐步递减,近似为nlogn。所以堆排序时间复杂度一般认为就是O(nlogn)级。

14567832
 
Copyright © 2008-2021 lanxinbase.com Rights Reserved. | 粤ICP备14086738号-3 |